## Quantum Fourier Transform w/ Leakage Ctrl

Dr. Stephen Providence

October 1, 2025



- QPU platform images
- SQMS Superconducting Radio Frequency platform
- SQMS Dillution Refridgerator cools to 14 microkelvin degrees
- Introduction
- What is the QFT?
- It's all about rotations
- Simulations are expensive
- "classical" has gates on bits, "quantum" has gates on qubits
- It's not a perfect system, quard rails needed
- We are interested in qudits, where d is depth







Title: Tenured Assistant Professor of Computer Science,

Thesis Defense & Publication: Feb. 2000, CUNY

Pissertation Advisor: Distinguished Professor Dr. Victor Y. Pan E-mail: sprovidence@copplin.edu

Phone: +1(410)951-6479

#### Awards:

\$2 million+ from NSF as PI or Co-PI since 2000

\$130 thousand+ from Dept. of Energy & IBM Quantum at Coppin

#### Research Areas:

Computational Mathematics

Quantum Computing, Architectures & Algorithms

Quantum Chemistry & Machine Learning on SI Ms



4 / 12

#### **Abstract:**

In circuit QED (cQED) systems we can manipulate the cavity Fock states to use a quantum processing unit or QPU. Because of the long coherence times associated with Fock states, "qudit" based computations are possible. The quantum Fourier transform QFT is instrumental in the synthesis of selective number-dependent arbitrary phase gate and displacement gates that comprise a QPU.

The QFT is the quantum mechanical version of the classical Fourier transform which maps signals in the continuous time domain into the frequency domain. The quantum Fourier transform maps signal into the phase domain. Posited over complex variables, the mathematics is simpler in phase space. We report conjectured results at the end

Phase space (rotations) instead of frequency space



- Phase space (rotations) instead of frequency
- space Cost functions with and without leakage control



- Phase space (rotations) instead of frequency
- space Cost functions with and without leakage
- control SNAP and displacement gates



- Phase space (rotations) instead of frequency
- space Cost functions with and without leakage
- control SNAP and displacement gates
- Bumper states



5 / 12

- Phase space (rotations) instead of frequency
- space Cost functions with and without leakage
- control SNAP and displacement gates
- Bumper states
  - Analysis of results



5 / 12

- Phase space (rotations) instead of frequency
- space Cost functions with and without leakage
- control SNAP and displacement gates
- Bumper states
- Analysis of resultsAcknowledgements



## Phase space

QFT produces amplitudes that in phase space that can define a signal in a more mathematically convenient manner than frequency space. Frobenius norms and related calculations are simpler.

Complex conjugates abound and if these computations were taken over the reals, mathematical difficulties arise.

a,  $b \in \mathbb{R}$ ,  $a \pm b$   $i \in \mathbb{C}$  where i is imaginary



# Cost function w/o leakage control

Our na ive cost function:

$$L = 1 - \sqrt{\frac{1}{N_c}} r \ U(\alpha, \theta) \vec{U} \qquad {}^{\dagger}_{T} \qquad (1)$$

where  $N_c \times N_c U_T$  is the target gate to engineer, and  $N_c \times N_c$  $U(\alpha, \theta)$  is the gate that we can engineer with SNAP and displacement blocks.



## Cost function w leakage control

Our na ve cost function:

Thus, we define a new cost function that penalizes the leakage after each displacement operator. We define the cost function as

$$L_{p} = 1 - \frac{\operatorname{Tr} U \Phi U(\vec{\alpha}, \vec{\theta})Q}{d} + W_{k=1}^{K} \qquad ||PU_{k}(\vec{\alpha}, \vec{\theta})Q||^{2}, \quad (2)$$

where  $||(A)||^2 = t^{J} \overline{\text{Tr}(A|A)}$  is the Frobenius norm, and w is the arbitrary weight we can define for each layer.



## SNAP and displacement gates

To facilitate qudits in circuit quantum electrodynamics (cQED) systems we alter the state of these qudits via SNAP (Selective Number-dependent Arbitrary Phase) and displacement gates. The OFT is used to synthesize them in alternating configurations.

As stated,  $U(\alpha, \theta)$  is the gate that we can engineer with SNAP and

displacement blocks. 
$$U(h,e) = 0$$
 (a,  $\theta$ ) is  $\phi$  is  $\phi$  in  $e$  in  $e$ 

and the blocks are defined as

$$B(\alpha_k, \overset{\rightarrow}{\theta_k}) = D(\alpha_k) S(\overset{\rightarrow}{\theta_k}) D(-\alpha_k).$$

Quantum Fourier Transform w/ Leakage Ctrl

#### **Bumper states**

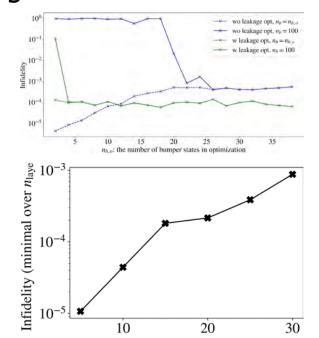
We can introduce projector operators

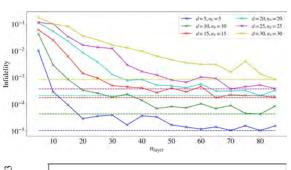
$$Q = \sum_{n=0}^{\infty-1} |n\rangle\langle n|, \quad (5)$$

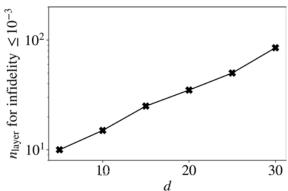
which selects the logical states, and then Thus, we introduce another projector operator that selects the bumper states

$$P = \int_{n=d}^{\infty} |n\rangle\langle n|, \quad (6)$$

such that if we define the target unitary as


$$U_{T} = \begin{cases} F & 0 \\ 0 & B \end{cases},$$


$$QU_{T}Q = F$$


(S)

# Some early tresults,

To be interpreted and refined. Further simulations are in progress.









## Acknowledgements

- This manuscript has been authored by FermiForward Discovery Group, LLC under Contract No. 89243024CSC000002 with the U.S. Department of Energy, Office of Science,
- Office of High Energy Physics
   This work was supported in part by the
   U.S. Department of Energy, Office of Science,
- Office of Workforce Development for Teachers and Scientists (WDTS) under the Visiting Faculty Program (VFP).
  - Special thanks to: D. Kurkcuoglu, M.S. Alam, J.A. Job,



October 1, 2025