2025 MS-CC Undergraduate Research Internship

PRESENTED BY: JORDAN JOHNSON & MYA TOLBERT

MENTOR: DR. NING ZHANG

The Stakes: Why Predicting River Flow Matters

- \$25B IN U.S. FLOOD DAMAGES (2023)
- IMPACTS: HOMES, FOOD SYSTEMS, INFRASTRUCTURE, EMERGENCY RESPONSE
- CLIMATE SHIFTS = CHAOTIC RAINFALL PATTERNS

Our Goal: Predict River Flow Before It Happens

- PREDICT NEXT-DAY STREAMFLOW FOR 25 U.S.

 BASINS
- USE 30 DAYS OF PAST CLIMATE DATA
- MODEL REGIONAL RIVER CONNECTIONS WITH GNNS

Column	Description					
Year	The calendar year (e.g., 2005)					
Mnth	The calendar month (1 = January,, 12 = December)					
Day	The day of the month					
Hr	Hour of day (usually not used in daily data — might be 0 or placeholder)					
dayl (s)	Day length in seconds (i.e., daylight duration from sunrise to sunset)					
prcp (mm/day)	Precipitation in millimeters per day					
srad (W/m²)	Shortwave solar radiation in Watts per square meter					
swe (mm)	Snow water equivalent in millimeters — water content of snowpack					
tmax (°C)	Maximum daily t	Maximum daily temperature in degrees Celsius				
tmin (°C)	Minimum daily t	emperature in de	grees Celsius	5		
vp (Pa)	Vapor pressure in Pascals — indicates humidity in the atmosphere					
1	prcp(mm/day)	srad(W/m2)	tmax(C)	tmin(C)	vp(Pa)	
date	prcp(mm/day)	srad(W/m2)	tmax(C)	tmin(C)	vp(Pa)	
2	prcp(mm/day) 0.00	srad(W/m2) 153.40	tmax(C)	tmin(C)	vp(Pa) 171.69	
date	2 010	550 65			0 22 222	
date 1980-01-01	0.00	153.40	-0.0654	-0.1630	171.69	
date 1980-01-01 1980-01-02	0.00	153.40 145.27	-0.0654 -0.0618	-0.1630 -0.1522	171.69 185.94	
date 1980-01-01 1980-01-02 1980-01-03	0.00 0.00 0.00	153.40 145.27 146.96	-0.0654 -0.0618 -0.0989	-0.1630 -0.1522 -0.1886	171.69 185.94 138.39	
date 1980-01-01 1980-01-02 1980-01-03 1980-01-04	0.00 0.00 0.00 0.00	153.40 145.27 146.96 146.20	-0.0654 -0.0618 -0.0989 -0.1098	-0.1630 -0.1522 -0.1886 -0.1976	171.69 185.94 138.39 120.06	
date 1980-01-01 1980-01-02 1980-01-03 1980-01-04 1980-01-05	0.00 0.00 0.00 0.00	153.40 145.27 146.96 146.20 170.43	-0.0654 -0.0618 -0.0989 -0.1098 -0.1129	-0.1630 -0.1522 -0.1886 -0.1976 -0.2221	171.69 185.94 138.39 120.06 117.87	

Meet CAMELS: Our Climate+Streamflow Dataset

- 671 U.S. RIVER BASINS (WE USED 25 WITH COMPLETE RECORDS)
- 30+ YEARS OF DAILY DATA
- VARIABLES: PRECIPITATION, TMAX/TMIN, SOLAR RADIATION, VAPOR PRESSURE, STREAMFLOW
- 30-DAY ROLLING CLIMATE
 WINDOW USED AS MODEL INPUT
- TARGET: NEXT-DAY STREAMFLOW PREDICTION

Understanding GNNs: Teaching Al to Learn from Connections

- GNN'S LEARN FROM RELATIONSHIPS,
 NOT JUST INDIVIDUAL POINTS
- RIVERS AREN'T ISOLATED, GNN'S
 CAPTURE HOW ONE BASIN AFFECTS
 ANOTHER

Turning Rivers into a Graph Neural Network

EDGES = NEARBY BASINS (K-NEAREST NEIGHBORS)

FEATURES = CLIMATE VARIABLES OVER 30 DAYS

FROM DATA TO PREDICTIONS: BUILDING THE STREAMFLOW PIPELINE

NodeRegressionGNN

• LOAD AND CLEAN 30-DAY WINDOWS OF **CLIMATE DATA** JOIN WITH **STREAMFLOW** LABEL (NEXT DAY) **CREATE A DAILY** GRAPH **SNAPSHOT**

StrongerGNN for Node Regression Graph Input at time

Node Features:

(e.g. [prcp, tin, tmax,...])

climate vars

Streamflow prediction per node (25 values)

How the GNN Sees the River System

Prediction Results: Did It Work?

- TRACKED REAL STREAMFLOW PATTERNS
- CAPTURED RAINFALL SPIKES AND DRY PERIODS
- UNDERSTOOD UPSTREAM AND DOWNSTREAM EFFECTS

Prediction Results: Did It Work? (Pt.2)

• Each node's color and size reflect the magnitude of streamflow.

What We Learned from the River

- CLEANING REAL DATA

 IS ESSENTIAL
- GNNS ARE POWERFUL
 FOR SPATIAL DATA
- TEAMWORK MADE THE PROJECT POSSIBLE

The Future of Flood

Forecising

- TRY NEW GNN ARCHITECTURES (GRAPHSAGE, GAT)
- PREDICT MORE DAYS AHEAD
- EXPAND TO MORE BASINS
- REAL-TIME SYSTEM POTENTIAL

Thank you for your time! We look forward to your feedback and questions.

Jordan Johnson
Texas Southern University
Chemistry Major, Biology Minor
Rising Senior
: j.johnson2820@student.tsu.edu

Mya Tolbert
University of Arkansas at Pine Bluff
Biology/ Pre-Dentistry
Rising Senior
:tolberm5979@uapb.edu